67,050 research outputs found

    The road to precision oncology

    Get PDF
    The ultimate goal of precision medicine is to use population-based molecular, clinical and other data to make individually tailored clinical decisions for patients, although the path to achieving this goal is not entirely clear. A new study shows how knowledge banks of patient data can be used to make individual treatment decisions in acute myeloid leukemia

    Precision oncology: the intention-to-treat analysis fallacy.

    Get PDF
    It has recently been suggested that precision oncology studies should be reanalysed using the intention-to-treat (ITT) methodology developed for randomized controlled clinical trials. This reanalysis dramatically decreases response rates in precision medicine studies. We contend that the ITT analysis of precision oncology trials is invalid. The ITT methodology was developed three decades ago to mitigate the problems of randomized trials, which try to ensure that both arms have an unselected patient population free from confounders. In contrast, precision oncology trials specifically select patients for confounders (that is biomarkers) that predict response. To demonstrate the issues inherent in an ITT reanalysis for precision cancer medicine studies, we take as an example the drug larotrectinib (TRK inhibitor) approved because of remarkable responses in malignancies harbouring NTRK fusions. Based on large-scale studies, NTRK fusions are found in ~0.31% of tumours. In a non-randomized pivotal study of larotrectinib, 75% of the 55 treated patients responded. Based upon the prevalence of NTRK fusions, ~18,000 patients would need to be screened to enrol the 55 treated patients. Utilizing the ITT methodology, the revised response rate to larotrectinib would be 0.23%. This is, of course, a dramatic underestimation of the efficacy of this now Food and Drug Administration (FDA)-approved drug. Similar issues can be shown for virtually any biomarker-based precision clinical trial. Therefore, retrofitting the ITT analysis developed for unselected patient populations in randomized trials yields misleading conclusions in precision medicine studies

    Precision Genomic Practice in Oncology: Pharmacist Role and Experience in an Ambulatory Care Clinic

    Get PDF
    Recent advancements in molecular testing, the availability of cost-effective technology, and novel approaches to clinical trial design have facilitated the implementation of tumor genome sequencing into standard of care oncology practices. Current models of precision oncology practice include specialized clinics or consultation services based on a molecular tumor board (MTB) approach. MTBs are comprised of interprofessional teams of clinicians and scientists who evaluate tumors at the molecular level to guide patient-specific targeted therapy. The practice of precision oncology utilizing MTB-based models is an emerging approach, transforming precision genomics from a novel concept into clinical practice. This rapid shift in practice from cytotoxic therapy to targeted medicine poses challenges, yet brings exciting opportunities to clinical pharmacists practicing in hematology and oncology. Only a few precision genomics programs in the United States have a strong pharmacy presence with oncology pharmacists serving in leadership roles in research, interpreting genomic sequencing, making treatment recommendations, and facilitating off-label drug procurement. This article describes the experience of the precision medicine clinic at the Indiana University Health Simon Cancer Center, with emphasis on the role of the pharmacist in the precision oncology initiative

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    Future paradigms for precision oncology.

    Get PDF
    Research has exposed cancer to be a heterogeneous disease with a high degree of inter-tumoral and intra-tumoral variability. Individual tumors have unique profiles, and these molecular signatures make the use of traditional histology-based treatments problematic. The conventional diagnostic categories, while necessary for care, thwart the use of molecular information for treatment as molecular characteristics cross tissue types.This is compounded by the struggle to keep abreast the scientific advances made in all fields of science, and by the enormous challenge to organize, cross-reference, and apply molecular data for patient benefit. In order to supplement the site-specific, histology-driven diagnosis with genomic, proteomic and metabolomics information, a paradigm shift in diagnosis and treatment of patients is required.While most physicians are open and keen to use the emerging data for therapy, even those versed in molecular therapeutics are overwhelmed with the amount of available data. It is not surprising that even though The Human Genome Project was completed thirteen years ago, our patients have not benefited from the information. Physicians cannot, and should not be asked to process the gigabytes of genomic and proteomic information on their own in order to provide patients with safe therapies. The following consensus summary identifies the needed for practice changes, proposes potential solutions to the present crisis of informational overload, suggests ways of providing physicians with the tools necessary for interpreting patient specific molecular profiles, and facilitates the implementation of quantitative precision medicine. It also provides two case studies where this approach has been used

    Impact of establishing a precision oncology program on cancer care delivery

    Get PDF
    The use of molecular profiling, biomarkers, and other targetable tumor alterations is becoming a central component of modern cancer care. There are many challenges of implementing precision oncology through traditional clinical operations. The purpose of this project is to enhance patient care by establishing a new clinical program with the specific focus of advancing and expanding the utilization of precision oncology
    • …
    corecore